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A SIMPLIFIED METHOD FOR THE DETERMINATION AND ANALYSIS OF
THE NEUTRAL-LATERAL-OSCILLATORY-STABILITY BOUNDARY

By LEONARD STEENTIHD and ORDViAY B. GATES,Jr.

SUMMARY

.4 necewa~ condition for neutral oscillatory stability h that
ROUM’S diwriminant R, formed from the coejirienti of the
8ta6ility equation, <8 equal to zero. The expression for R CT
D(BC–AD) –B2E where A, B, C, D, and Eare the coej%ients
of the latera[+iability equati”on. I% a large number of the
cases considered in this %udy, it ha8 been found that the term
FE maybe neglected. Routh’8 discrirninant is then =factorable
into two simplljcd expre8m”on8, that is, BC—AD=RI and D;
and eitlwr RI =0 or D=O, or both, may constitute a condition
of rwutral stability. Test fun&ions hme been derired which, if
satisjed, indicate that the simplz>d e.rpre88iona may be med to
approximate R =0. If RI =0 and D=O 8atisfy the necessary
and w..gjicient conditions for a neutml+scillatory-stability
boundary, D=O repre-aents the boundary for the 08ciliation
which ha8 a period compvatz”rely lunger than the period of
oscillation for which RI =0 i8 the boundary.

In general, the re8ult8 of the computations obtained -from
R, =0 and D=O 8how re~ good agreement with the rem.dts
calculated by the exact expresm.on for R=O. !IIe nature of the
mode8 of motion. a8 a f unction of the directional-stability derio-
atiw and the efect ir<-dihedml derinrtire is dku88ed in detail.

INTRODUCTION

The results of recent- investigations (references 1 and 2
and unpubkhed rwults of IateraI-etability anaIyses for
several exptXrnentaI high+peed airplanes) have indicated
that smaII variations in some of the airplane mass and
aerodynamic parameters may cause a pronounced change in
the oscdktory stability of the airplane. It has been diftlcult
to eqdain the reasons for such pronounced changw because of
the complexity of the expression for neutral oscillatory stabil-
it-y. This expression, based on the IateraI+tabiIity equatiom%
with three degrees of freedom, involves a Iarge number of
combinations of the mass and aerodwamic parameters. In
order to predict the stability of the IateraI oscillation, there-
fore, it appears necessary to make a separate stabdity
analysis for each airplane.

The simplifkd expressions derived for the neutral-
osdatory-etability boundary in the present theoretical invee-
tigationsimpIify thecdculationsr equired to obtain the bound-
ary in the anal@s easentisd for each airpIane. Because of the
comparative simplicity of these expressions, an insight into

the important. combinations of ma= and aerodynamic
parameters that affect the lateral oscillatory stabdity is also
protided. Through further investigation and analysis of
the effects of these major parameters, the necessity of making
separate calculations for each airpIane might possibly be
eliminated. Test functions are given which, if satisfied,
indicate that the simplified expressions may be used.

The nature of the modes of motion as a function of C%

and Clfl, the directional-etabiIity derivative and effective-

dihedd derivative, respectively, is shown to depend upon
the location of the stabiIity boundaries pIot ted as a function
of CV and Cb.

The results of the calculations baaed on the simplified
expressions are presented for comparison with the results
obtained by the complete expression for the neutral-
osciIIatory+tabiIity bounda~.

SYMBOLS AND COEFFICIENTS

angle of bank, radians
angle of azimuth, radians
angle of sideslip, radians (0/T~
sideslip veIocity aIong the l“-a.tisl feet per second
airspeed, feet per second
mass density of air, slugs per cubic foot

dynamic pressure, pounds per square foot
()

; pv

wing span, feet
wing area, square feet
weight of airplane, pounds
mass of airpIane, slugs (17’/g)
acceleration due to gravit y, feet per second per second
relat ivedensity factor (m/PSb)

inclination of principaI Iongitudimd axis of airplane
with respect to flight path, positive when principal
axis is above flight path at the nose, degrees
(see fig. 1)

angIe between reference axis and horizontal axis,
positive when reference axis is above horizontal
a.., degrees (see fig. 1)

angIe bet vreen reference a-m-s and principaI axis,
positive when reference atis is above principaI
asis, degrees (see fig. 1)
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angle of flight p~th to horizontal axis, positive in a
climb, degrees (see fig. 1)

radius of gyration in roll about principal longitudinal
finis, feet

radius of gyration in yaw about principal vertical
ruxis, feet

nondimensional radius of gyration in roll about
principal Longitudinal axis (kxJb)

nondimensional radius of gyration m yaw about
principtd vertical kxis (i&Jb)

nondimenaionaI radius of gyration in roll about
Longitudinal stability axis (li~x~ coszq+Kz~sin*q)

nondimensional radius of gyration in yaw abou L
vertical stability axis ( ~[KzOgCOS9q+KxO* sid q)

nondimensional product-of-inertia parameter
((Kz$–Kx:) sin v Cos II)

‘i’ftmefficient(vn

(Rolling moment
rolhg-moment coefficient

@b )

(Yawing moment
yawing-moment coefficient qsb )

lateral-force coefllcient
(

Lateral force
@ )

effective-dihedral derivative, rate of change of rolling-
moment coeilicient with angIe of sidealip, per
radian @C@3)

directional-stability derivative, rate of change of
yawing-moment coefficient with angle of sidedip,
per radian (W/W?}

lateral-force derivative, rate of change of lateral-
force coefficient with angle of siddip, per radian
pcyjafl)

damping-in-yaw derivative, rate of change of yavring-
moment coefficient with yawing-angular-velocity

fac’orfperradian(ac.p3)
rate of change of yawing-moment coefficientt with

rolling-anguIar-veIocity factor, per radian

C’c.laa
damping-in-roll derivative, rate of change of rolling-

moment coefficient with ioBing-an@ar-veIocity

factor, p’rra~m@c’’a%)
rate of change of rolling-moment coefficient wit h

yawing-angular-velocity factor, per radian

bc’~%) ‘---
rate of change of lateral-force coefficient with rolling-

angular-velocity factor, per.radian @J%O
rate of change of lateral-force coefficient with ya&g-

angular-velocity factor, per radian
bc,%$)

time, seconds
nondimensional tirnc parameter based on span (Vt/b)

()
differential operator -&

Routh’s discriminant

i
FIGURE I.-system of am and anzulscmlstlcmzhl~in fllght. Arrows IndImtc posklw

dlmotion Of.21@CS. 7=0-7-6

k complex root of stabiIity equation
AA4+Bh%CU+~+E=0 (A=g+iw)

h’ complex root of stability equation
Zh’’+zh’a+n’a+nh’ +Z= o (h’=:’*M)

P period of oscillation, seconds
T1~ time for amplitude of oscillation to change by factor

of 2 (positive vaIue indicates a decrease to ha] f-
amplitude, negative value indicates an incrcwa to
doul.-de amplitude)

A, B, C, D, E coefficients of IatcraI-stabilit.y equation

EQUATIONS OF MOTION

The nondimensional linearized equations of mot.iol~, re-
ferred to the stability axes, used to calculntc the spiral-
stabfity and oscilkt.ory-st ability boundaries for nny flight
condition are:

Rolling

2jib(&2~bat#+&z~/#) = C#H-; clp~b++; ci,~b+

Yawing

Sidedipping

men &eMbis substituted for ~, #&Mbfor #, &e”b for p in
the equations written in determinant form, k must lx a rod
of the stability equation

Ah4+Bh’+CV+Dh+E=0 (1)

where

A=8P~ (KxzKza–3&.’)

B= —2pb’(2~<x’Kz2c,B +Kx’c.,+ K,’C$-– 2Kxz’t’3fl–

KxzCl,–h”xzCnP).—
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MultipIying equation (1) by ~b and substituting A= ~’
~b

results in the stability equation

.h’d+lh’~ +TL-i’’+m’+E=o (2)
where

.x=;+

D=D

E=p&

The damping and period of the Iateral oscillation in
seconds are given respect ively by the equations

~ a= 0.69 ~bb
1 ——— . .

g v

p=6.2fi ~bb
u’ v

where f’ and u’ are the reaI and imaginary parts of the
complex root. of stability equation (2).

ANALYSIS

The necesw-y and sufficient conditions for neutral oscilla-
tory stabdit.y, as shown in reference 3, are that the coeffi-
cients of the stability equation satisfy Routh’s discriminant
a-et.equal to zero

R= BC’D-.4lY’-IPE=O (3)

and that B and ~ have the same sign. The expression for
R=O can be derived by assuming that the stabiMy equation
has two roots h= &iw, where u is the an@ar frequency of
the neutrally stabIe oscillation. This assumption is based
on the fact- that for the condition of neutral oscilhitory
stability the real part of the complex root must be zero.

If k=ia is substituted in the stabiIity equation, the foIIowing
two equations are obtained:

Au’– C&+E=O (4)

–Bd+Da=O (5)

Solving equation (5) for W2and then substituting the result

()
toz=~ in equation (4) results in Routh’s discrimimmt

BCD–AD’–FE=O

It is seen from equation (5) that u= ~~ is the a%tiar fre.

quency of the neutraIIy stabIe oscillation ordy when B and
ZI are of the same sign since u must have a red value if the
root X= +ia is to represent an oscillation. If B and D arc
of opposite sign and R= O is satisfied, the two roots of the
stability equation given by A=+ ia are reil, one posit i~e
and one negative. It is important to note that the zI, C,
and E coefficients may be of opposite sign to the B and ~
coefficients, and neutral osdatory stability w-ill stfl occur
as long as Routh’s discriminrmt is equaI to zero and the ~
and ~ coe5cienta are of the same sign.

In generaI, the R=O boundary in the C&,Cl&plane has

two branches. The two branches result from the fact. that.
R=O is a quadratic equation in Cl~ and thus has two C,P

roots for every due of Qxfl. Usually, the two branches can

be approximated by simplified expressions for R= O. In
certain cases, however, which are discussed in the section
entitled “Test. Functions,” either one or none of the branches
may be approximated.

NIOW,the condition R=O is a necessary but insufficient
condition for neutraI oscillatory stability. The simplified
expressions, therefore, which approximate R= O do not
necessarily represent boundaries of neutral oscillatory
stabiIity. Other conditions, elaborated on in the section
‘Talidity of D=O and R,=O as lTeutraIGdlatory-StabiIity
Boundaries,” must be satisfied before either e.xprcssion
represents a valid boundary.

There are, therefore, two kinds of tests that must be made:
First, tests to determine whether I?=O may be approximated
by simplified expressions; and, second, testa to determine
which of these expressions represents a boundary of neutraI
oscillatory stability. The significance of the lateral-stability
boundaries is indicated by a discussion of the modes of motion
in the ~xd,C’lgplane.

DERIVATIONOFSIMPLIFIEDEXPR~IOXS

T-ivo of the most important stabiIity deri~atiwa affecting
Iateral oscillato~ stability are the directional-stability
derivative C.B and the efiective~edral derivative C’lfl.

The bounda~ for neutral oscillatory stability is usuaIIy
pIotted as a function of these two derivativea with C’,p ~

the ordinate and C18as the abscissa. The method used to

obtain the neutraI oscillatory stabiIity boundary is first to
substitute the -mIuH of the mass and aerodynamic param-
eters of a specific airplane in- the coefficients of the stability
equation while maintaining Cn~ and P% as variables and

then to cdcnlate the C% roots of equation (3) for several
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values of (79. For a given value of C&, the expression for

B=O is a quadratic equation in C16that is of the form

alCtis+blClfl+cl=O

For a very large number of cases, it has been found that the
last term of Routh’s discriminant &l?, which contributes
only to bl and cl, produces a negligible change in the expres-
sion

alClfl’+ blClfl+ c1=O

If, therefore, the tam WE is negIected,
Routh’s discrimimmt reduces to

R= D(BC–AD) =0

equation (3) for

(6a)

Thus BC–AD= O and D=O are the approximate factom of
the quadratic equation

alC%z+blCt@+cl=O

The expression l?C-xl~ is henceforth called R,.
In order to simpIify the expressions for R, and 17, the

expected range of vahw.s of mass and aerodynamic param-
eters for high~pced aircraft were substituted in the coet%-
cienta of the stability equation to determine which terms
could be omitkd without appreciably aflecting the values of
RI and D. The following simplified coefficients were obtained:

A=8P? (KK2K.’–KXJ)

B= – 2J4,’(KW7.,+ 2Kx’Kz’Crfl+ ObKz~

(
C=P, 4wK&.fl-4~hKxzC~+~ C+CG+

C,,Kz’CY& c.p~tr
)

D= F,(c~–2c~Z’)c~– pb(c$–2~~XZ)c~

E==: CL(CtirC9-ChCv)

The expressions for RI and D thusbecome

R,= (A,Kxz–A,As) Cip+[–Kxz(2A4CL+ C%KXZ)–Kx’(A,–

and
D=AZCIP– (Clp –2CJZ4 C.fl=o (6c)

where
A,= Kx=C7rr+2Kx2Kz2C& C,pKzz

Az= Cmp–2C&zz

&= K=’Kz’–K=z’

(t3d)

The simplified expressions R, =0 and ~=0, as presented,
are applicable only to conditions of level flight or to condi-
tions of small angles of glide or climb. Simplified expressions
for conditions of large angles of glide or climb can be derived
by a procedure similar to the one presented.

TESTFUNCTIONS

The approximak discrirninants RI = O and D= O aro based
on the assumption that HE can be neglected when Routh’s
discriminant is set equal to zero. Thus, the simplifkd
expressions for the neutral-oscillatory-stability boundary,
R, and D, should not be used if including the terms WE
causes an appreciable change in the roots of R= O. h
appendix A test functions are derived which indicate the
incremental change in the roots of Rl= O and 17= O due to
the terms BZE. If certain conditions placed upon these test
functions are satisiied, then RI and D can be used to calculato
the 1?= O boundary.

If, at a given value of C’%, the root of RI= O is denoted

by CIP=r, the approximate deviation of this root from n

root of R=O is given by

Ar=
el(e—r)

rldl(d—r)+el
(7)

If & is small, then RI=O is a close approximation to otm

branch of R=O. A suitablo criterion for this approximation is

or
lAr150.0:

whichever is the larger.

Similarly if a root of D=O is clcwotcd

approximate deviation of this root from a
given by—

Ad= e,(e—d)
rldl(r—d) +el

by Cib=d, ilw

root of R=O is

(8)

If Ad is small, then D=O is a close approximation to onc
branch of R=O. A suitable criterion for this approximation is

or
ldAISO,Ol —

whichever is the larger.
The expressions for rl, dl, el, r, d, and e for usc in cquatious

(7) and (8) arc -.

rl = 8P*(A&z-&is)

dl=pbA*

el= 2PbAlAC#II,

r= (C$)R,=O

d= (Qrp)~.o

e= (qdiw

where Al, Az, and A3 w-c defined in cquat.ions (6d).
The value of C’mpto be used in these test functions should bc

selectd~rom the prokdde mnge of (?.p of the airplane for

which the lateral-stability analysis is to bc made. l’bus, the
approximation of IL=O and D=O to R = Ois determined iu that
region of the C,fl,C~ plane pertinent to a particular analysis.
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VIUJDITY OF D-OAXD RI-Q AS NWTItAL OS=ATOEY-13TABIIJTY
BOUKDA&lES

k mentioned previoudy, for R= o to be a bonnda~ for
neutral oscdktory stabiIity, the coefllcients 11 and ~ must
be of the same sign. The three predominant terms of 13con-
tain the factors – C=,, – C,e, and – Cl,, respectively. For

positive damping in roll, Cl, is negative; and for positi~e

weathercock stabihty (C& positive), Crp and C.r are negative.

Thus, B is positive in the usuaI case where there is vreat.her-
cock stabfity and darnping in rolI. Therefore, 11 must gen-
errdIy be positive in order that R=O be a neutraI-stabiIity
boundary. If the exact boundary R=O has been caIctiated,
it is merely necessary to pIot ~= Oand l?= Oand note whether
R=O is located on the side of D=O where D is positi~e. A
primary purpose of the present report, hovierer, is to obviate
calculation of the esact boundary by the use of simplifkl
boundaries together with test functions. A method to
determine the sign of ~ from the resuhs of the simplified
expressions is therefore presented in the foIIoviing paragraph.

For a given value of dx~ (selected from the probabIe range

of ~fiPof the airplane for which the Iateral-st abilit y analysis

is to be made) let d be a value of Cl@for which ~=0 and d’

be a dightly different wdue for which

R= R,D–B’E=O

The substitution of C*p=d’ gi~-es

B ‘E(d’)
D(d’) = -R~

The sign of D at the R=O boundary {C’16=d’) is therefore

determined by the signs of E and R, at d’. But since d
diffem little from d’, the signs of l?(d) and R,@ will be the
same as the signs of ~(d’) and RI(d’), respectively. Hence
the sign of D at R=O is the same as the sign of E/Ri at D=O
(fig. 2); that is,

E(d)
Z?(d’) =m

If the signs of E and R, are the same, ~ is positive and repre-
sents a neutral-oscillatory-stability boundary; if IZ and RI
are of opposite sign, ~ is negative and then represents a
boundary for which the roots of the stability equation are
equal and opposite in sign.

.27

./6

./2

b?
ii!?

.04

0-.16 -.i2 -.08 -.04 0 .04 .08 .[2 ./6 20
-c’B

FiGmr Z.-VnUditgn(D=OasaztmUrnI-c&tIIMory-stsbtlitybonncIarT.

The preced@ analysis is applicable for the large majority
of cases where R’ (d’) and RI (d’) are of the same sign as E(d)
and RI(d), respectively. For these cases, the ~ curve is
widely separated from the 1? and R; curves. If the D curve
is close to either the E or RI curve, the signs of E and RI
should be determined at Clp=d’. Ho~ever, a veqr good

approximation to the value of d’ can be obtained by adding
to d the value of M calculated in the previous section entitkd
“Test Functions.” Hence, the sign of D is determined from
the signs of E and RI at C,8=d+~d.

If the value of C,p at which R,=O is substituted in ~ and

the resuhant sign is positive, R1=o is a neutraI-oscillatory-
stability boundary.

II is interest~~ to note thak for some aircraft, the ~=0
curve, which appro-ximates one branch of the R=O curve, is
a neutral-osculatory-stability boundary over one section of
the curve and a boundary for equal and opposite red roots
over the remaining section. This division of the D=O curve
into two distinct parts is caused by a change in sign of the D
coefficient at some point on the curve. If, as has been found
in a large number of cases, RI is positive for d values of C’xB

and Crfion the D =0 curve, the sign of the D coetlicient de-

pends only on the sign of E at these points. As sho-ivn in
figure 3, therefore, the point of intersection of the curves D= O
and E=O is the point of separation of the D=O cure into
two characteristically different sections. For points on the
hatched side of E=O, the E coefficient is negative and, there-
fore, the dashed part of ~=0 is a boundary of equal and
opposite real roots. Conversely, on the unhatched side of
E=O, the -?Icoefficient is positive and the solid part of ~=0
approximates a boundary of neutral oscillatory stability.

For small positive or negative values of C.6 and negative

dampi~w in roII, it is possible for B to be negative. A similar
analysis is applicable to this case where now II must be nega-
tive to satisfy the necessary condition that R=O is a boundary
of neutral oscfiatory stabflity.

In general, m-hen the simplified e.xpretions are used to
obtain a neutral-osciUata-y-stabi!ity boundary, the procedure
to be used is as foIIovvs:

(I) For a given value of C%, selected from the probable

range of Cz~ of the airpkme for vvhich the lateraktability

anidysis is to be made, caIculat e r and d, the Clfi roots of

RI =0 and 17=0, r~pectively.

.8?0

.16

. f2
p

Q
.W

_04

o
-.f6 -. f2 -J)8 -.04 0 .04 .08 .12 .16 20

- Ctn

FmmE 3.-lUkt of thePISltfmItithe E!=Obmmdnryonthevdidfty MD=Ou anapproxi-
mate neutml+sdlatwy+IabtIfty bmmdacy.
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(2) Determine the value of Ar and ~ by substituting the
results into the test functions. ‘“--

(3) If the criterions for Ar and M as set forth k appendix
A are satisfied, consider RI=0 and ~= Oclose approximations
to the R=O boundary.

(4) In order to determine the validity of R,=O as a
boundary of neutral oscillatory stability, substitute the

given value of Cx~and Clp=r into the 11 coefficient. (If the

resulting sign is positive, RI= O approximates a branch of the
neutral-oscillatm~-stability boundary.)

(5) In order to determine the validity of 11=0” as a
boundary of neutral oscillatory stability, substitute the given

value of CnB and Cl$=d inta ~. (If the resulting sign

is positive, ~= O approximates a branch of the neutral-
oscillatory-stability boundary; if the resulting sign is nega-
tive, D=O approximates a boundary of equal and opposite
real roots.)

NATUREOF MODES OF MOTION IN THE Cafl,Clb PLANE

In this section, the changes in the roots of the lateral-
stability equation, which occur upon crossing the various
stability boundaries, w-e discussed according to the principles
of the theory of equations as given in references 3 and 4.
The solution of the lateral-stability equation gives four roots
which may be four real roo b, two pairs of cog u~ate complex
roots, or two real roots and one conjugate complex pair. A
pair of complex roots indicates an oscillatory mode and a
reaI root indicates an aperiodic mode. If the airplane is
disturbed from its trimmed condition by an arbitrary dis-
turbance, the subsequent .rnotion is compo~ded of these
modes in differenk proportions. The method of calc&ting
the dfierent proportions of the mo_dea is presented, for ax-
ample, in references 5 and & Such calculations of the motion

for numerous pointa throughout the CW,C,Bplane would be

very laborious. It is more practical, therefore, to investigate
merely the types of modes that may be expected throughout

the C~P,CZPplane as indicated by the stability boundaries.

The calculation of the motion could then be. limited to several
points of intere9t.

Consider a case where the neutral+scillatory~tabiIity
boundary R,=O and the spiral-stability boundary l?=O
are Iocated in the first quadrant of figure 4 (a). The area
between the two boundaries is a region of complete stability.
The roots of the. stability equation for combinations of
Cmfland Clfi in this region, such as point .4 in figure 4 (a),

are two negative reaI roots and one conjugate compIex pair
with the refd part negative. One of the real roots whjch is
numerically small corresponds to the spirally stabIe motion
of the airplane. The other real rooh corresponds to the
heavy damping of the pure rolling motion. The complex
roots with tho real part negative show that the sodIed
Dutch roll oscillation is stable. l?assing through the .lI=O
boundary from point A to point B causes the spiral mode
to become unstable, and crowing through the RI =0 boundary

from point A to
become unstable.

AERONAUTICS

point C causm the oscillatory mmlr to
The second branch of the R= O Imumlnry

plotted in the second quadrant as D=O is not a nmllraj-
oscillatory atability bounclary but rathr a boundnry h
equal and opposite roots as determined by the analysis
presented in the section entitled “1’tdidity of D=O and
R1=o as Neutral-OscillatoryS ability Boumhics,” “The
roots Qf the stability equation for cornbinfit ions of C*B and

C% on this boundary are two equal and opposite real rook

and a pair of complex roots with the reaI part ncgat ivu.
The positive real root is the spirally unstable mock, and tho
negative real root is the damping-in-ml] mode. Tfw
oscillation continues to remain st Me even thfJugh the )7
coefficient is negat i-re.

For the case where one oscillatory-etahility boundary
11=0”’appears hr the first quadrant and anotlwr oscillatory
stability boundary RI=O is in the seconcl quadrant. (fig. 4 (b)),

the period of the neutrally stable oscillation iY much
greater-on Zl=O than on l?l= O. This fact wan bc shown LO
be true by investigating the angular frequency of thu
neutrally stabIe oscil]at ion for points IocatwI on the Rl= O
and ~=0 boundaries. & shown previously, the angu]m
frequency w is equal to ~~; and, tlmvforc, since tk
boundary 21= O approximates ono branch of I?=o, thr
angdar frequency for points on that hvmch is very smnll.
For combinations of (?.P and Clg on RI=0, the angul~r

frequency is “much greater. In general, L)=O is a ncutrtd-
osciIIatory+t.ability boundary for a long-pmiod oscillation.

.04
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~“w?
.04

0
, , , , , , 1 ,

II IHIII!!IIIIIIO T
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I I
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.04

“ -.16 -.12 -.00 -.04 0 .04 .08 .12 .16 .ZU
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FIGUUEi.—~’aturoof motuof wabllity efwntlonfn Ciia,cl, lI~W
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The roots at point A of figure 4 (b) have the same character
as the roots at point A of figure 4 (a), that is, two negative
real roota and one pair of conjugate complex roots. At
point B the roots of the Meraktability equation are two
pairs of conjugate complex roots. It is interesting to note
that the boundary for two eqmd roots occurs between point A
and point B and can be considered the boundary beyond
which two pairs of complex roots exist. Reference 4 shows
that for a quartic equation

Ak’+BN+G’N+Dh+E=o

the boundrt~ for equal roots is obtained
discriminant

–.&3-~7~

equal to zero, where
~= BD_Lw g

—
3

and

by setting the

Between this bounda~ and ~=0, the period of the stabIe
oscikt ion which corresponds to the nevdy formed pair of
complex roots is longer than the period of the oscillation
which corresponds to the other pair of complex roots. As
~1~ is increased to point C on the unstabIe side of ~=0,

the newIy formed Iong-period oscillation is the one that
becomes unatabIe, whereas the short-period oscillation
remains stabIe. At point D the rcmts consist of a spirally
unstabIe mode, a stable mode due to the derivative C’rP,and

a stable oscillation which becomes unstable in passing through
R1=o to point E.

Figure 4 (c) represents the case vrhere both R1=O and
~=0 appear in the first quadrant but only R, is a neutral-
osciUatory-st abilit y boundary. The curve ~= O is the
boundary for two equaI and opposite reaI roots. Point A
once again has two real negative roots and a pair of complex
roots with the real part negative. At point B, on the
unstable side of R1=O, the real part of the complex roots is
posit ive and indicates an unstable osciIIation, whereas the
two real roots are stilI negative. The boundaqv for C=O is
between RI=O and D=O. Some investigators of lateral
stabihty have thought that a radicaI change occurs in the
roots upon crossing through this boundary. The crdcula-
tions indicate, howe~er, that the roots do not. vary appre-
ciably upon pass~~ through C=O. At II= O, however,
there must exist two equal and opposite real roots; this
condition is possible only if the complex roots divide into
real roots since the other two reaI roots are negative in sign.
The calculation of roots at point C indicate that the complex
roots had divided into two real positive roots, one of which
was exactly equaI in magnitude to one of the negative roots.
Again, the boundary for two equal roots, located between
~=0 and point C, wouId determine the combinations of

!MATi&51—~0

C.fi find C,b where the complex roots divide into two real

root&
There have been several cases for which a neutral-oscilla-

tory-stability boundary did not exist in the CRfl,Clpplane.

An anaIysis of these cases indicated that the boundary for
equal roots was in the osci.lMoriIy stable region and had
divided the stabIe oscillation inta. twa subsiding nmdes-
The neutr&asciMatory-stability boundary, therefore, would
not have any sigrMcance.

RESULTS AND DISCUSSION

The simphfied expressions were used to crdculats El =0 and
~=0, and the results are compared vrith the reauk of the
calculation of R= O based on the complete iqmession. hrot
only do RL=O and D=O show good agreement with R= O
(figs. 5 to 13) but the comparative simplicity of the R, and
~ expressions aIIows identification of the major parameteza
that affect the stability boundaries.

EFFECT OF C%–2CdW OX TEE BRAXC2i OF R-O
APPROXIMATED BY D-O

Reference 2 shows that a stabilizing shift in the R=(I
boundary is obtained when C,, is increased in a positive

direction up to a certain value, but further increases in the
positive direction cause a destabilizing shift in R=O. The
effect. of -rarying C., on the R= O curve is presented in

figure 5 for a model tested in the Langley free-flight tunnel. _
The figure illustrates very good agreement between R=O
and the aimpliM expressions RI= O and D=O. The
expression for D= O is

(c~–2c&Z) C*
%=-c%- 2cfJrz’— .—

~hich indicates that for positive C.fl when the numerator is

negative in sign the D=O boundary is in the second quad-
rant for negative values of C.J—2C&”Zr=At and in the first

quadrant for positive vahws of .4!. For the cases of negative
As presented in figure 5, the D=O boundary would appear
in the second quadrant. It can be shown, however, by the
method described in the section “Validity of D=O and RI= O
as NTeutral-OscilIatory+itabiIity Boundaries” that D= O in
the second quadrant is not a neutral-oscillatory-stability
boundary and hence is not plotted in figure 5. However, as
C’ngia increased in a positive direction, where now At is posi-

tive, an increase in the posit ire value of .4* causes the D= O

bounda~ to shift upward in the first quadrant in a destab-
ilizing direction.

From the results shown in figure 5, it is seen that for the
cases of C.= equal to 0.30 and 0.40 ody the did-line part of

the R=O curve in the first quadrant (the branch which may
be approximated by D=O) is a neutral-oscillatory-stability
boundary. The shortdash-Iine part of R=O is a boundary
of equal and opposite real roots. The Ason for this divkion
of the R= O curve into two parts is discussed in the section
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entitled ‘‘VaIidity of D = O and RI= O as l!Teutral-Oscillatory-
Stability Boundaries” and is illustrated in figure 3.

EFFECTOF C.,-2CLKZ* ON THE BRANCH OF R-O

APPROXIMATED BY R,-O

‘1’he important effect of Cnp on RI=o occurs only in the

coefficient of the Clp term, AIK~—AA, in which CXPaffects

only the factor ~. The sign of As is always positivo and the
sign of Al is negative for positive C*P. By definition, Kxz is

positive if the principal axis is above the flight path at the
nose of the airplane as is the case for the curves presented in
figure 5. ~‘In general, for positive C.b, the expresion of R,=tl
which does not include any Cld terms is positive and, fxcept

for one temn, is independent of C.,. If, therefore, tie
~oeficient of CIDis positive, El =0 is in the first quadrant;

whereas if the coefbient of C~fiis negative, RI =0 is in the

second quaclrant. As Cmpincreases in a positive direction

and As becomes more positive, tic coaci~t of CZDbm~~

more negative and RI =0 in the second quadrant shifts
upward in a destabilizing direction. If & ia negative but
the absolute value of AZ incrwes, as in going from C,P=0.15

to C.P= –0.10 in figure 5, the coefficient of ez~ becomes
more positive and RI in the firstquadrant rdso shifts upward
in a destabilizing direction. ..-Thus the results indicate that
increasing the absoIute value of Aa has a destabilizing effect
on the neutral-oscillatory-stability boundary.

According to a previous discussion herein, variations in
C’fipthat maintain Az constant cause no shift in the D=O

boundary. When, therefore, R=O is approximated by
D= O, such changw in CnP and K, should have a negligible

effect on the R= O boundary. In order to Lest this point,

calculations were made for a frm-flight airphmc modd for
C., varying from 0.30 to 0.63 while simult.nncously vw-ying

KZ* in order to maintsin tlw same positive vnlue of 112.
The results showed the expected inscusitivity of Lhti R= O
boundary to these changes.

It should be rememlx!rcd t~ML 11=0 in tlw first qundr&mL
is the neutral-oscillatory-stability boundmy for the loug-
period oscillation; and if insttihility were to occur, [hc pi]oL
might Dot find this type of instabi]it.y diflhwlL 10 control.

EFFECT OF Cw Crr AND XX ON THE BR4NCH OF R-O

APPROXIMATED BY D=O

The 11 esprcssion indicates t.hRL the D= O boundary is
independent of the derivatives Cn~ nnd Cr~ and the mass

parameter K=. Figures 6 am? 7 show a comparison of tlw
results .Qbtained by the compkto calculations with ~~-O
for the cases in which C’n,and CY@,rcsp~wtivclyj wurc mbi-

t,rnrily doubled in value. As noted in thr figurca, C’., and

CY8have a negligible effect on the boundary. Thr dfccL of

Kx on the branch of R=O which may k approximate by
D=O is ShOWll in figure 8. Complete calculations were
made to obtain the R= O curves for the previously discussed
free-flight airplane model. Tho value of ~lz used ill lhcsc
calculations was 0.17. For purposes of compllrkon, & was
arbitrarily increased by a factor of 2.5. Agsin thb results
ahow practically no effect of h“x on this kmch of R-O, m
is indicated by the simplifkd expression D= O. Nor the
case discussed in figures 6 to 8, t.k branch of R= O appr~xi-
mated by RI= O is in the second quadrant and has liLtlo
practical importance. Hence, the cflect of tlmw paramctcm
on RI vraz not determined for this pmticular case.
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EFFECT OF PRODUCT OF INERTIA OK THE BRANCHES OF R-O

APPROXIMATED BY RI-O A?/D E-8

The product of inertia has been shown to have a very
pronounced effect on the lateral stability of presentday
airpkmes designed for high-speed high-altitude flight (refer-
ences 1 and 7). The importance of the product of inertia is
ilhstrated in figure 9 (a), which pr=ents the R=O boundaries
of the hypothetical airplane discussed in reference 1 for two
angles of inclination of the principal axis relative to the
flight path, T=O” and 71=2”. Calculations were also made
for these cases using R,=O; and the results presented in
figure 9 (a) show the same marked stabtiizing shift in the
boundary, caused by the 2° inclination of the principal axis
above the flight path, as obtained by the complete calcula-
tions. The -due of A, for the R,=O calcuhtlons was –0.18.
The value of C., -was then increased so that A~ was equal

to 0.13 (fig. 9 (b)). In this case, ~=0 appears in the first
quadrant and RI=O is in the second quadrant. Although
both ~= O and RI=O are valid boundaries, the results are
discussed onIy for the elkt of product of inertia on ~=0
since only the C*B,C9 combinations in the first quadrant

are usually of practical significance. CMculations for ~= 0°
and q=2° were made using L)= O and R= O. Although the
product-of-inertia factor Kxz does appear in the D expression
(in the term –2C’J&), an examination of D indicates that
this term could have ordy a negligible effect on D=(l when
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Clv is much greater than 2cJ&, as is usually the case.

Figure 9 (b) shows that the results predicted from 11=0
agree very weII with the results obtained from the compIete
mdcukions.

EFFECTOFRADllOF GYRATION ON THE BRANCH OF R-O

APPROXIMATED BY ItI-O

Figures 10 to 12 ma pr~ented for the purpose of showing
the close agreement twtwoen results obtained by using RI=0
and rcsdts obtained from reference 1. The three figures
illustrate the effect of the radii of gyration in roll and yaw
kxO and kzO,respectively, on the neut.ral+scillatory-atabiIity

boundary. Figure 12 emphasizes the fact that the simplified
expression is sufficiently accurate to predict the effect of
k.O on tho oscillatory-stability boundq throughout the

entiro range of variation of kxo.

EFFECT OF WING LOADING AND ALTITUDE ON THE BRANCHES OF R-O
APPROXIMATED BY RI-O AND D-O

TIM effecta of wing loading and altitude on the ncutral-
oscillatory-etability boundaries were detelrnined siluul-
taneously by considering variations in the relative density
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factor K*becauso pa varies directly with both wing loading
and altitude. An examination of the c.xprmsions J?l= O
and ZI=-O indicated that increasing ~b causes a slight destab-
ilizing shift in RI=O buL does not aff(’ct ~= O sinco ~b dots
not appear in the expression for ~= O. T]m trend shown by
these results agrees with the results found in rcfcrcncc 1
concerning the effect of Pb on the l~eutrd-oscillatory-stability
boundary.

COMPARISON BETWEEN NEUTRAL-OSCfI,LATORY-STA BKJTY BOUNDARIR9
OBTMNED BY EXACT AND SIMPLfFf ED EXIWESSIO?W FOE A IIIGN-SPEED
EXPERIMENTAL AIRPLANE

Some of the neutral-oscillatory-atabiIity boundaries ob-
tained from recent calculations for scvcrd expmimcntti]
high-speecI airplanes have appeared much diffmxmt from the
conventional stability boundaries, Bccausc of the com-
plexity of the complete expression for R= O, it is d~mll to

deLmminc the reasons for such unusuaI looking Cum-es and
the significance of the bouudarics From the simplified
expressions, however, a complete aflalysis of the boundmim
can bc easily obtained. The R=O boundaries of an cxpcri-
ment,al airplane are shown in figure 13 (a). ~n kkddition to
the R=-O boundaries, the Zl= O boundarice arc also plottcxi
in the figure. A mentioned at thu outset of this report,
R=O is a neutrt_d-oscilla tory-stabi]iLy boundary only if
D is positive. The l?= O boundaries on the htitchvd side. O(
11=0 me not therefore ncutrabcillatory-sttibilily lwund-
aries. The boundaries for the sanw cxperimcmtal nirplanr
caIc.ulated from tho simplified repressions are plotted in
figure 13 (b). The Ii’,= O and D=O boundaries which ar~
not neutral-oscillatory-stability boun(?aries, as dcturmirtud
by the analysis presented in the section entitled “Validity of
D=O and RI=O as Neutral-OsciI1atory-Stahilit y 130und -
aries, ” are shown as dash-line curws in the figure. In
D= O, the coefficient of C’lBbccomcs zero at [\O= 0.050

and, therefore, the D= O boundary approaches posit ivc
irkflnity in the second quadrant at C’mP=0.056. As C’flp

increases- above 0.056, D= O returns from negative infinity
and appears in the fimt quadrant. Similarly, Rl= O ap-
proaches negative infinity when C.d is approximately equal
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-c,,
w R= RID-BE=O.

(bm=o and D-o.

FIGrEE 13.-OsMlatory shb!llty bormdp.riesfor an experinmm.1 hlghspA a@BZW.

to 0.!25 since the coefficient of C’lflin RI= O, ALKn—AJ3,

is zero at this value of C,fl. Abcwe C.fl of 0.25, RI= O

ret urns from positive infinity and appears in the second
quadrant. It is necessary to note that in figure 13 (a) the
neutr&osciIIatory-stability boundary is one continuous
curve; whereas in figure 13 (b) this boundary is composed of
two sections, one section of RI= O and the other section of
11=0. The Iatter fact provides the important information
that the period of the osdation which becomes unstable
upon passing through the ~=0 boundary is comparatively
Ionger than the period of the oscillation which becomes
unstabIe upon passing through the R*= O Imundary.

CONCLUSIONS

The folIowing condusiona were reached from a theoretical
investigation of a simplified method for obtaining and
anaIyzing the neutral-IateraI-oscillatory-stabiIity boundary:

1. A necessary condition for the latertd-neutrakscillatory-
stability boundary is that R= I)(BC-~) —BE= O, where
A, B, C, D, and i? are the coefhients of the lateral-stability
equation. The exp~ion for R=O is approximated by the
expressions ~=0 and RI =BC—AD=O. Criterions are de-
rived which, if satisfied, indicate that the approximate
expressions satisfy the necess~ and sticient conditions
for a neutraI+scillatory-stabiIity boundary.

2. If ~=0 and R1=O approximate R=O, the curve D=O
represents the neutraI-osciIIatory# ability boundary for the
oscillation which has a period comparatively Ionger than the
period of the oscillation for which R1=O is the boundary.

3. In general, the results of the computations obtained
from R,=O and D=O show very good agreement with the

results calculated by the emxt expression for R=O. Specii5-
caIIy, the results of the investigation indicated:

(a) An increase in the abscdute vaIue of the parameter Al,
which is equal to C%—2CXz1 (where ~% is the ymving-

moment coefikient due to roIIing-anguIar-velocit y factor,
C’Lis the trim lift coefficient, and Kz is the radius of gyration
in yaw), causes a destabilizing shift in the branches of
R=O approximated by ~=0 and R1=O.

(b) The branch of R=O approximated by ~=0 mahdy
depends upon the parameter AZ and the damping-in-roll
derivative C’1,. The product-of-inertia term KXZ also appears

in 11, but it. has a negligible effect on the branch of R=O
approximated by 11=0.

(c} An increase in the reIative-density factor ,LLbcauses a
destabilizing shift on the branch of R=O approximated by
RI=O but does not Meet the branch of R=O approximated
by D=O.

4. The neutraI-oscillatory-stabiIity boundaries computed
from the simplified expressions show excellent agreement
with the corresponding boundaries presented in NACA
TN 1282.

L.KNGLEYAERONAUTIC LABOMTORY,

LV.4TIONAL ADVISORY COWITTEE FOR ~ERONAUTICS,

LANGLEY FIELD, VA., August 4, 1948.
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APPENDIX A

DERIVATION OF TEST FUNCTIONS Ar AND M

For a given vahm.of C%, selected from the probable range

of C,fl of the airplane for which the latmal-stability analysis

is to be made, let

As shown in figure 14 Lhe exact roote of R= B,D–B’E=O
occur at the intersection of the straight line BZE with the
parabola RID. In the vicinity of the point C =r, at which

‘!R, =0, the curve R,D is approximated well y a. straight
line tangent to the curve at ~l~=r, that is,

If there is a root of R= R,D–FE=O near RI =0 (that is,
if .WE intemects RID near the point r in fig. 14), then

R= (–rd,+r,dJ (f?%-r) –elCIP–%=O

Thus, the approximate deviation of a root of R=O from R, =0
is giVSIl by

rlq —rael
Ar= (cz—-~)‘r, (r,dz—rdl—el)

e, (e — r)
‘rldl(d—r)+el

(Al)

If this deviation, &, is small, then RI=O is a close approxi-
mation to one bmnch of R=”u. A suitable criterion for this
approximation is

II l-l

or

lArl~O.01
I

whichever is the larger.
In the case of ~=0, a similar analysis results in the test

function

Ad=
el(e—d)

Tldl (r–d) +el
(M)

If Ad is small, D=O may then be considered a close approxi-
mation to the other branch of R=O. A suitable criterion for
this approximation is

.CW

~ .0/6
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~GURE 14.—Ckaphlcal rcprescntat[on c4 thu ruutdO(the R-O boundnry.

or

Ad ~0.01

whichever is the larger.

The expressions for r,, d,, and e, for usc in cqumtions (A 1)

and (A2) are

r,=8.ub(A,K.~-A,As)

dl=~~~

e= 2Pd120Lc~

where

A,=Kx’Cs,+ 2KZ’KZZCY8+ c~Kz’

A,= C%–2CJCzZ
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